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Abstract 

 

An area of interest is the development of AI agents that are able to improve and 

adapt as a video game is played. This paper presents a new methodology for 

Evolutionary Algorithms (EA), specifically Rolling Horizon NeuroEvolution of 

Augmenting Topologies (rhNEAT). This algorithm works by evolving weights, 

connections and nodes in real-time instead of sequence of actions like in traditional 

Statistical Forward Planning (SFP) methods. This in conjunction with using Forward 

Models for planning several moves ahead, before returning an action, forms the 

basis of this new approach. We explore several variations and parameter changes 

of the algorithm across 20 GVGAI (General Video Game AI) games and compare it 

against state-of-the-art methods. We find that changing rhNEAT specific parameters 

such as mutations, coefficients from the distance function and speciation thresholds 

have marginal effects on performance of the algorithm, where at most results tend 

to perform slightly worse than the baseline parameters. Furthermore, we also found 

that rhNEAT in general is not better than other SFP methods it has, in some games, 

been able to set new records that other popular methods struggle with. This 

algorithm is general and opens up new ways of conducting rolling horizon 

techniques, providing an inspiration for future work based on these algorithms. 
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Introduction 

From as early as 1951 video games, such as Nim, and artificial intelligence have 

worked together to create entertainment that is both interesting and enjoyable. 

Many modern video games still rely on “scripting” for their behaviour, this can 

result in the AI being easily exploited ruining immersion and enjoyability of the 

game (Lara-Cabrera et al 2015). Thus, research into General Video Game 

Playing (GVGP) has become very popular in recent years, some of which can be 

attributed to the availability of frameworks such as General Video Game AI 

(GVGAI) (Perez et al 2015). An important area of research is creating AI agents 

that are general i.e. they are able to play multiple types of games. GVGAI 

provides more than 180 single and two-player games where each game can have 

multiple levels. This framework has been used in many previous studies to 

evaluate Statistical Forward Planning (SFP) methods such as Rolling Horizon 

Evolutionary Algorithms (RHEA) (Perez et al, 2013). 

The conceptualised rhNEAT algorithm aims to introduce a new SFP method by 

taking concepts from both NeuroEvolution of Augmenting Topologies (NEAT) and 

RHEA. NEAT is not an SFP method as it was designed to train AI agents offline 

i.e. individuals are compared one or two at a time until the entire population has 

been tested and a new population is created to form the next generation.  

rhNEAT evolves neural network weights, connections and nodes. The network is 

then only used to generate sequences of actions from which an individual’s 

fitness score is obtained. 

This paper will explore the Background concepts and Literature Review in 

Chapters 1 and 2. We will also discuss the implementation and experimentation 

in Chapters 3 and 4. Finally, we will conclude the paper in Chapter 5 and discuss 

further work in Chapter 6. 

Aims: 

The main aims of this project include; creating an AI Agent that successfully 

implements the rhNEAT algorithm and evaluate its performance compared to 

other SFP methods such as Monte Carlo Tree Search and Rolling Horizon 

Evolutionary Algorithm. Furthermore, our goals include developing and testing 

several variants of rhNEAT where its specific parameters are changed and 

compared against a baseline. 

Research Question: 

Can rhNEAT be a new SFP method with performance similar to or greater than 

other popular SFP methods such as RHEA? 
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Chapter 1: Background 

1.1 Statistical Forward Planning Methods 

Statistical Forward Planning (SFP) methods are algorithms that use a Forward 

Model to simulate future states from corresponding state-action pairs (Perez et 

al, 2019). Examples of SFP methods include Monte Carlo Tree Search (MCTS) 

and Rolling Horizon Evolutionary Algorithms (RHEA). 

1.1.1 Monte Carlo Tree Search 

MCTS is a popular game playing algorithm which employs best-first search 

techniques (Chaslot et al, 2008). The basic process for MCTS follows a tree that 

is incrementally built upon in an asymmetric manner. The algorithm must balance 

the exploration of different nodes while also exploiting those that have the most 

potential. The tree is used to simulate possible actions an agent can take by 

pseudo-randomly selecting moves. Thus, simulating many random games 

enables winning strategies to be found. The algorithm builds the tree by repeating 

four steps until some decision budget is reached. These steps include: 

• Selection: While the state is in the tree the next action is decided by 

balancing exploration and exploitation. 

• Expansion: When a state cannot be found in the tree a new node is 

added, in this way the tree is expanded for each simulation. 

• Simulation: During simulation actions are picked at random and simulated 

until a certain depth or game over is reached. 

• Backpropagation: Once reaching the end of a simulated game each tree 

node that was traversed is updated with a value assigned to the final state 

of the simulation. 

The action that is actually played in the game is the node that was most frequently 

explored. 

1.1.2 Rolling Horizon Evolutionary Algorithms 

In RHEA individuals are represented by a sequence of actions. A forward model 

is used to simulate several moves ahead for each individual and evaluate how 

well they perform until some decision budget like a time limit is reached. The first 

action of the individual with the highest evaluation is played in the actual game 

tick. RHEA has been extensively documented in the field for General Video Game 

playing and has been found to, in some places, outperform MCTS (Perez et al, 

2020). Section 1.4 will go into further detail about the algorithm. 
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1.2 NeuroEvolution 
NeuroEvolution is a deeply studied field of computer science. It falls under the 

umbrella of evolutionary computation in respect of its work on evolving artificial 

neural networks (ANN). It was initially coined almost three decades ago where 

work was mainly focused on, “describing techniques for learning connection 

weights,” (Baldominos et al, 2019). This resulted in most of the early work of 

NeuroEvolution being bound to simple ANN. Baldominos notes that it wasn’t until 

the emergence of the backpropagation algorithm and its limitation of not knowing 

the most optimal way of connecting neurons (topologies) within a network that 

pushed for the popularity of evolutionary algorithms (EAs).  

Gnana and Deepa (2013) note, that optimal topologies for backpropagation were 

found through trial-and-error and following guidelines, which they say in truth 

were not sufficient in finding optimal solutions. It wasn’t until the late 1980s when 

researchers finally began using evolutionary algorithms as opposed to 

backpropagation “for evolving weights and determining the optimal topologies,” 

(Baldominos et al, 2019). 

Smith (1974) explains that evolution in biology can be seen as ‘an optimisation 

process’. With this thought, Baldominos states; it can be seen that 

NeuroEvolution is the cross between optimisation problems and the “Darwinian 

theory of natural selection and evolution.” So, to summarise NeuroEvolution or 

evolutionary computation can be seen as solving optimisation problems using 

real life biological mechanisms as analogues. As such EAs can be seen 

implementing operators such as cross-over, selection, speciation and mutations. 

Effectively taking the principles of evolution from the real world and applying them 

to optimisation algorithms.  

Figure 1 shows the general framework for most evolutionary algorithms where it 

involves a defined population of N which undergoes several evolutionary 

operators such as selection, reproduction and mutation and then iteratively 

repeat the step for the newly generated population in hopes that each subsequent 

population is better than the last in terms of an average fitness score. 

Figure 1 General framework for evolutionary algorithms. (Baldominos et al 2019, p.5) 
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1.3 NEAT 
NEAT was introduced by Stanley and Miikkulainen in 2002 in their paper, 

Evolving Neural Networks through Augmenting Topologies, (Stanley and 

Miikkulainen, 2002). Baldominos has stated that it had, “become one of the most 

cited and used systems in NeuroEvolution”. The NEAT algorithm evolves both 

weights and topologies of a neural network. As explained in 2.1 genetic 

algorithms implement the crossover operator to generate offspring from two 

parents. This means that EAs must take this functionality into account for 

encoding and make it as seamless as possible. Stanley and Miikkulainen have 

stated, “NEAT’s genetic encoding scheme is designed to allow corresponding 

genes to be easily lined up when two genomes cross over during mating.” They 

have achieved this by introducing the concept of innovation numbers. These 

numbers act as ‘historical markings’ as to determine which genes match up with 

which during crossover, we will go over this in section 1.3.2. 

1.3.1 Genetic Encoding 

The NEAT method involves three fundamental solutions to evolving artificial 

neural networks. These include the usage of historical markings to allow for more 

meaningful crossover, the idea of speciation so that generations are protected 

from being removed too early and finally, the idea of starting with the simplest 

network first and incrementally making it more complex to find the most efficient 

solution (Stanley et al, 2005).  

Figure 2 shows an abstract depiction of the NEAT genome encoding. Each 

genome in NEAT would have a corresponding list of node genes and connection 

genes. The node genes include a list of input, hidden and output nodes, that can 

be connected (Baldominos et al, 2019). Stanley also mentions that each 

connection gene contains an in-node, out-node, weight of connection, a Boolean 

Figure 2 Genotype to Phenotype mapping example a high-level overview of the genetic encoding of NEAT (Stanley and 
Miikkulainen, 2002, p.106) 
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variable describing if its enabled or not, and an innovation number. Mutations in 

NEAT can affect weights and topology of a network. 

Weights evolve following the established conventions in NE. However, 

topological mutations can involve adding new connections or nodes, forming the 

basis for complexification of networks in NEAT. Stanley describes the add 

connection mutation, as a singular new connection gene being added to two 

previously unconnected nodes. The add node mutation adds a node to an already 

existing connection effectively splitting them and disabling the original 

connection. As a result, two new connections are made and the connection 

between the first and new node is given a weight of one while the connection 

from the new node to the second node is given the original weight. This is 

illustrated in figure 3 below. 

 

Figure 3 example illustration of the two genetic mutations in NEAT. (Stanley et al, 2005, p.9). The numbers 
at the top of the boxes in figure 3 represent the innovation numbers, the arrows show a connection between 
two nodes and the last line represents if that connection is enabled or not. In the add connection mutation 
step we can see a random connection has been made between nodes 3 and 5. This is represented in the 
grey box which shows the new connection with an incremented innovation number. The add node mutation 
steps illustrate what happens when a random node is added between an existing connection. In this case a 
random node, 6, is added between the connection of nodes 3 and 4. This has the effect of disabling the 
connection 3->4 and creating two new connections, 3->6 and 6->4. 

1.3.2 Innovation Number 

Baldominos describes innovation numbers as incremental values that is added 

to each connection that is created. This acts as indicator to when the gene 

appeared in the evolution process. Innovation numbers play a crucial role in the 

crossover operator as they need to be able to recombine genes with different 
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topologies, something which has been stated as being difficult (Radcliffe, 1993). 

Two genes are lined up based on their innovation numbers, gaps may appear 

when innovation numbers are present in only one parent. The offspring is formed 

either through uniform crossover, by randomly choosing matching genes, or 

through blended crossover, where the weights of two matching genes are 

averaged (Wright, 1991). Figure 4 shows an illustration from Stanley’s paper of 

uniform crossover.  

 

Figure 4 Crossover of two parents forming an offspring (Stanley and Miikkulainen, 2002, p.109). 

In Figure 4 Parent 1 and 2 are lined up according to their innovation numbers. 

Where there are genes that do not match, they are labelled as disjoint or excess 

genes dependent on whether or not the gene is within the range of the opposite 

parent’s innovation number. Disjoint and excess genes are taken from the more 

fit parent or from both if they are equally fit. In Figure 4 we assume that both 

parent’s fitness is equal so we can see that the offspring has inherited genes from 

both parents. This operator also provides the opportunity for disabled genes to 

be enabled again. To summarise the use of innovation numbers allows NEAT to 

perform crossover without doing expensive analysis on topologies as genomes 

regardless of size or species stay compatible throughout the evolution process.  
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1.3.3 Speciation 

Stanley has noted that, since smaller networks optimise faster and adding new 

mutations to genes can initially result in lower fitness scores, it can result in newer 

topologies having a small chance of surviving more than one generation. This 

can lead to losing innovations that could prove to be important in the future. 

Therefore, Stanley and Miikkulainen have incorporated the idea of speciation into 

NEAT. This relies on the principle of populations within specific species 

competing against each other over competing against the entire population as a 

whole. This provides time for different topological innovations to optimise before 

they compete against other species (Stanley et al, 2005). 

1.4 RHEA 

Rolling Horizon Evolutionary Algorithms (RHEA) is a subset of EAs discussed in 

section 1.2. Unlike conventional EAs that train a controller with an off-line 

simulator, RHEA works by evolving an individual plan in an imaginary model for 

some time in milliseconds to reach an imaginary state several times. This is 

repeated for all individuals in a population so that the first action of the best 

individual is chosen. This behaviour, of looking ahead, is what gave rise to the 

nomenclature “Rolling Horizon” in RHEA (Perez, 2013).  

An in-depth analysis of the vanilla version of RHEA was done on the General 

Video Game Artificial Intelligence (GVGAI) framework on a subset of 20 games 

by Perez et al. They modified several parameters such as population size and 

individual length and measured the performance of each configuration. 

Performances were then compared against other algorithms such as the Open 

Loop Monte Carlo Tree Search (OLMCTS) and Random Search (RS). Some of 

their findings concluded that RHEA outperformed OLMCTS when number of 

individuals per population was greater than five thus making it an alternative to 

OLMCTS in GVGAI competition (discussed in section 2.1). They also found that 

the RS algorithm was able to find better solutions than RHEA which they believe 

is due to the vanilla RHEA not being able to, “explore the search space quickly 

enough given the limited budget,” (Perez et al, 2013). This leaves room to 

improve RHEA such as to combine RHEA with other techniques to form hybrid 

GAs. 

1.4.1 Algorithm 

As the algorithm has been used extensively on GVGAI I will be discussing it with 

the assumption it is playing one of the single player games of the framework. The 

algorithm begins at the start of each game tick by initialising a new set of action 

plans, represented by populations of individuals (Perez et al, 2013). Various 

methods of population seeding have been analysed by Gaina et al, but this paper 

will only be looking at vanilla RHEA where the population is randomly initialised. 

Traditional EA operators, such as mutation and crossover discussed earlier, are 
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used to obtain new individuals for the next generation. These new individuals are 

evaluated using a Forward Model, a system to simulate several moves ahead, 

and are then assigned a fitness value, via a heuristic function, and sorted 

accordingly to it (Gaina et al, 2017). Figure 5 shows an overview of the RHEA 

cycle. The best individuals according to their fitness scores are carried through 

subsequent generations. This process is repeated until a set number of iterations 

or an end condition is met, such as the allotted time or memory limit being 

reached. At this stage the algorithm chooses the first action from the best 

individual at the end of the process. Once the action is played, a new state is 

obtained and the entire process is repeated. 

 

Figure 5 RHEA cycle overview (Perez et al, 2013, p.5) 
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Chapter 2: Literature Review 

2.1 GVGAI 

Benchmarking AI algorithms using game-based AI competitions has proven to be 

popular and successful in raising awareness of AI research. However, Perez et 

al describe that most existing competitions focus on one game. This leads to 

competitors tailoring their AI algorithm specifically to that game rather than 

improving the quality of their algorithm. They argue that an algorithm that is able 

play “any number of unseen games” is what truly constitutes to an artificial 

general intelligence. Thus, the General Video Game Artificial Intelligence 

(GVGAI) competition is one the first created that does not focus on playing one 

game, but rather on a “number of unseen games,” (Perez et al 2015).  

The GVGAI framework is a Java port of Py-Video Game Design Language (py-

vgdl) redesigned by Perez et al. The framework introduces an interface in which 

a controller can make decisions on which actions the player in the game should 

make. Perez et al believe, researchers need to develop their algorithms without 

knowing which games the agent would play. The GVGAI competition has made 

available a dedicated webserver that allows competitors to upload their AI 

agents to be evaluated in a set of unknown games (Perez et al, 2019). During 

the competition all agents have only 40ms of decision time. 

The GVGAI framework also has made improvements to the sprites from the py-

vgdl. This to make the games more appealing for human players. Figure 6 shows 

the evolution of graphical quality in the Pac-Man game from py-vgdl to the most 

recent version of GVGAI framework.  

 

Figure 6 Graphical improvements of Pac-Man game from py-vgdl to the most recent GVGAI framework (left 
to right). The middle image is an early version of Pac-Man on the GVGAI framework (Perez et al, 2019, p.7)  

The GVGAI framework contains a Forward Model which is able to model the 

environment and simulate future states when an action and current state is given 

(Perez et al 2019). Perez et al put forward that allowing AI players to simulate 
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and create plans to approximate the best course of action is something “inherent 

to human intuition and processing.” They argue since humans use this decision-

making process for a wide range of scenarios an AI having this ability would make 

it a step closer to general intelligence.  

A controller class named Agent.java must inherit the abstract class in the 

framework must inherit the abstract class AbstractPlayer and implement the 

methods the constructor Agent and act. The constructor is called once per 

game and needs to finish before 1 second of CPU time (Perez et al, 2015). The 

second function is called every game cycle and is responsible for returning an 

action before 40 milliseconds. If an agent takes between 40 and 50ms the action 

returned is NIL i.e. no action is returned. If the agent goes over 50ms it will be 

disqualified from that run. 

Two arguments of the same type are given to both Agent and act those being: 

• ElapsedCpuTimer: a timer to tell the method when the call will occur. 

• StateObservation: this is an object which represents the current state 

of the game and provides a FM.  

Therefore, the StateObservation object acts as the medium in which states 

are advanced to the next state after an action. The object allows for copying so 

AI agents can use the FM and plan actions taken in the game. The stochastic 

nature of the games found in the framework should typically be dealt by the AI 

agent (Perez et al, 2015). The StateObservation object also provides a wide 

range of information including a score, the victory state and the current time step. 

The agent is provided a list of actions by the StateObservation object each 

game within the framework supplies the available actions. Perez et al also 

mention that the object keeps a list of observations some of which include, each 

sprite in a game being identified by a unique integer and its corresponding 

behaviour i.e. if it’s stationary or non-stationary, Non-playable characters, 

collectables and doors. An observation grid is also accessible through the object 

which relays all observations on a 2-dimensional array. Finally, a history of avatar 

events is provided by the object to access details of collisions between the player 

and any sprite in the game. 

2.2 Real Time NEAT (NERO) 
Real Time Neat (rtNEAT), was introduced by Stanley et al in 2005. It removes the 

general concept of EAs being trained offline. They introduce an algorithm that 

allows agents to adapt and change in real time while keeping core elements of 

NEAT i.e. rtNEAT is able to complexify ANN as the game is being played allowing 

complex behaviour in real time (Stanley et al, 2005). To showcase rtNEAT they 

came up with the idea of creating the game called NeuroEvolving Robotic 

Operatives (NERO). The idea involved creating a game where learning is the key 
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to win, this is emphasised by Stanley et al saying, “without learning NERO could 

not exist as a game.” 

NERO is played by both a human player and an AI agent in this case rtNEAT. 

The human player acts as a trainer who teaches a team of agents in military 

combat (Stanley et al, 2005). The trainers must design a series of exercises and 

goals with increasing difficulty so that their team can begin learning. Once the 

trainer feels ready, they can deploy their team to fight another team trained by 

another trainer. Stanley et al have found that this made for a “captivating and 

exciting culmination of training.” 

rtNEAT assumes that the entire population is playing at the same time, so fitness 

scores are constantly being collected as the game progresses. The key question 

that was posed was how could agents be constantly replaced so that offspring 

could be evaluated. Stanley et al solution included replacing a single individual 

every several game ticks. The agent with the worst adjusted fitness is removed 

and replaced with a child of parents chosen from among the best adjusted fitness 

values. 

 

Figure 7 rtNEAT loop performed every tick. (Stanley et al, 2005, p.16) 

Figure 7 shows the rtNEAT loop that is performed every ‘n’ tick. Stanley et al 

states that, as rtNEAT produces one new offspring at a time it cannot replicate 

NEATs conventional method of speciating as NEAT assigns species to every 

individual each new generation. Therefore, rtNEAT must speciate in real-time. 
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2.3 HyperNEAT 
Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) is a 

method introduced by Gauci et al as a way of evolving indirectly-encoded neural 

networks by using a compositional patten producing network (CPPN) (Gauci et 

al, 2010). This allows for neural networks to be described in terms of its geometry 

to view any geometric regularities. Gauci et al used HyperNEAT on checkers as 

a benchmark. They found that the algorithm was able to extract geometric 

information from the board providing the agent with an advantage as it was able 

to generalise better than other approaches. They concluded that the algorithm 

was able to create smoother and more regular neural networks. 

2.4 Applications in General Video Game Playing 

Some of the existing applications of NE in general video game playing include 

Hausknecht et al. introducing HyperNEAT-GGP to play Asterix and Freeway on 

the Atari platform. The algorithm worked by taking in the raw game screen and 

analysing it to detect objects that were used as input features for HyperNEAT, 

using the game score as fitness (Hausknecht et al, 2012). Hausknecht et al in 2014 

later extended the algorithm to work on a set of 61 Atari games, where he 

compared HyperNEAT and NEAT methods (Hausknecht et al, 2014). Finally, 

Samothrakis et al. used Separable Natural Evolution Strategies to evolve a neural 

network that learns to play 10 of the GVGAI games. They showed that the 

methods proposed were able to learn most of the games played (Samothrakis et 

al, 2015). 

2.5 Conclusion 
To conclude, the purpose of Background and Literature review was to understand 

key aspects relating to NeuroEvolution, understand in detail how the NEAT and 

RHEA algorithms work, analyse and understand the GVGAI framework and to 

find related work already done in this field. The paper by Stanley et al on rtNEAT 

provided an existing implementation of a real-time NEAT algorithm, this allows 

for a more defined research question and an idea of where rhNEAT fits within the 

scope of NE. rhNEAT differs from rtNEAT with respect to the idea of using a 

forward model to plan actions to take in game whereas rtNEAT requires a real-

time trainer to train the network before it can be tested. rhNEAT should be able 

to solve simple problems without needing training. Analysing the GVGAI 

framework has proven that the included forward model and implementation of 

games would be the perfect test for the rhNEAT algorithm as it will heavily rely 

on concepts of RHEA which the GVGAI framework has extensive support for. 
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Chapter 3: Rolling Horizon NEAT (rhNEAT) 

3.1 The NEAT part 

Rolling Horizon NEAT (rhNEAT) is configured to have a fixed population size of 

𝑃 individuals. Each one of them represents the configuration of a neural network, 

which is initialized with a fixed number of inputs and outputs and no connections. 

As seen with NEAT, the genotype of rhNEAT is formed by node genes and 

connections genes, which are initialized through a list and a map respectively. 

This helps keep a record of all the nodes and connections between those nodes. 

Since NEAT starts with the simplest network first and incrementally makes it more 

complex through each evolution, rhNEAT begins with an empty connection gene 

map i.e. there are no connections between any nodes. However, there are input 

and output nodes that are added to the node gene list at the start. A list of 

individuals with a fixed size is populated where each of them contain an empty 

genome with only the input and output nodes (Perez et al, 2020).  

As explored in Section 1.3, mutations in NEAT can affect weights and the 

topology of the network in different ways, each one of them under certain 

probabilities: 

• Mutate link (𝝁𝒕): creates a new link between two nodes. 

• Mutate node (𝝁𝒏): picks an existing random connection and splits it into 

two new connections with a new node in the middle; the original 

connection is disabled and the weight from the first node to the new middle 

node is set to 1.0, while the connection from the middle to the second node 

is set to the original connection weight. 

• Mutate weight shift probability (𝝁𝒘𝒔): alters the weight of a connection, 

shifted by a value picked uniformly at random factor in the range [−𝑊𝑠, 𝑊𝑠].  

• Mutate weight random probability (𝝁𝒘𝒓): replaces the weight of a 

connection by a value picked uniformly at random, in the range [−𝑊𝑟 , 𝑊𝑟].  

• Mutate toggle link probability (𝝁𝒕𝒍): toggles a connection from enabled 

to disabled, and vice versa. 

As can be seen, there are several types of mutations that can occur to the 

individuals. NEAT mutations, particularly the topological ones, form the basis for 

complexification of the evolved networks. Since smaller networks optimise faster 

and adding new mutations to genes can initially result in lower fitness scores, it 

can result in newer topologies having a small chance of surviving more than one 

generation (Stanley and Miikkulainen, 2002). This can lead to losing innovation 

that could prove to be important in the future. In order to prevent this, NEAT uses 

speciation, which relies on the principle of populations within specific species 

competing against each other instead of competing against the entire population 
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as a whole. This provides time for different topological innovations to optimise 

before they compete against other species. On each generation individuals are 

firstly organized into species according to a distance function. This function, 

shown in Equation 1, is a simple linear combination of the number of excess, 

disjoint genes and the average weight difference 𝑊̅of matching genes (Stanley 

and Miikkulainen, 2002).  

 𝛿 =
𝑐1𝐸𝑥𝑐𝑒𝑠𝑠

𝑁
+

𝑐2𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡

𝑁
+ 𝑐3𝑊̅ (1) 

The coefficients 𝑐1, 𝑐2 and 𝑐3 can be used to tune the impact of these 3 variables. 

𝑁 is the number of connections from the larger genome, which is normalized to 1 

if there are less than 20 connections. Each species is represented by a randomly 

chosen genome from that species in the previous generation. Individuals are 

compared to these representatives in the distance function. A new individual is 

placed in the first species with a distance as determined by Equation 1, respecting 

a maximum threshold 𝐶𝑃. If the genome is not able to find a suitable species, a 

new species is created with this new individual as its representative. 

Furthermore, during evolution, a percentage 𝑅 of individuals in each species are 

removed but not deleted. The individuals in each species are sorted such that the 

lowest scoring members will always be removed first. If a species has no 

individuals or only the representative left, said species is removed from the 

algorithm.  

All tune-able parameters mentioned in section 1.3, NEAT, are present in rhNEAT. 

The base values used for the experiments in this paper, are included below in 

Table 1. 

Table 1 Base rhNEAT Parameters and their Values (Perez et al 2020) 

Parameter Name Value 

𝑃 

𝐿 
𝑅 

𝐶𝑃 
𝑐1 

𝑐2 
𝑐3 

𝜇𝑙 
𝜇𝑛 

𝜇𝑤𝑠 
𝑊𝑠 
𝜇𝑤𝑟 
𝑊𝑟 

𝜇𝑡𝑙 
𝐹𝑀𝑏 

Population Size 
Rollout Length 

Individuals discarded per generation 
Speciation Threshold 

Excess coefficient 
Disjoint coefficient 

Weight difference coefficient  
Mutate Link Probability 
Mutate Node Probability 

Mutate Weight Shift Probability 
Weight Shift Strength  

Mutate Weight Random Probability 
Weight Random Strength  

Mutate Toggle Link Probability 
Forward Model calls budget 

10 

15 
20% 

4 
1.0 

1.0 
1.0 

0.5 
0.3 

0.5 
0.4 
0.6 
1.0 

0.05 
1000 
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3.2 Rollout 
A crucial aspect of rhNEAT is the use of a forward model. An individual is 

evaluated by first producing the phenotypical NN it encodes, to then roll the state 

forward from the current game state until a state in the future, 𝐿 steps ahead. On 

each one of these steps, features are extracted from the game state and used as 

input for the NN the individual encodes.  

 

The action suggested by the NN is then applied to that intermediate state, 𝑆𝑛 so 

𝑆𝑛+1 is reached, repeating the process until 𝐿 steps have been given. Figure 3 

describes the rollout function in rhNEAT.  

 

 
Figure 8 This figure shows the summary of what occurs in rhNEAT after genetic operators are applied. A 
single individual's Neural Network (NN) is evaluated by performing rhNEAT rollout on it. The features are 
extracted from each state and is used as the input for the NN. The NN returns an action to pass to the 
Forward Model. This is repeated rolling the state forward L times. The individual fitness can be evaluated 

from one or more states visited in the rollout (Perez et al, 2020).  

Each visited state can be evaluated using a simple heuristic function, described 

below in Equation 2. The fitness of an individual can be computed by evaluating 

either the last state, or a combination of the observed in the states visited. Perez 

et al have experimented with different configurations we will discuss their results 

in Chapter 4. 

 ℎ(𝑠) = {
106                win = True
−106            win = False
game score     otherwise

 (2) 

3.2.1 Evaluating rhNEAT’s Neural Network Output 

When evaluating the output of the NN we receive values for each output node in 

order. We take the highest value output node and translate that it into the correct 

action. This process occurs throughout the rollout and at the final end of the game 

tick to get the best possible actions. 
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3.3 Rolling Horizon NEAT and GVGAI 
Rolling Horizon NEAT (rhNEAT) is the combination of NEAT’s ability to procure 

complex neural networks (NN) that are formed through evolutionary operators 

(selection, crossover, mutation and speciation) to give an output action and the 

statistical forward planning features found in RHEA to evaluate an individual’s 

NN.  

3.3.1 Overview of the rhNEAT algorithm 

Population of individuals are evolved through NEAT genetic operators to encode 

nodes and connection into a NN. Inputs for the NN are derived from the current 

game state features while the outputs are fixed nodes representing all actions 

that can be applied in a given game. Each individuals NN is put through the rollout 

where it is evaluated by seeing an 𝐿 number of steps ahead using the output of 

the NN as actions. Once a computational budget threshold is reached, the 

algorithm selects the individual with the highest fitness and runs its network 

forward using features from the current game state as inputs. The output action 

is then returned to be played in the game. rhNEAT will then again be called in the 

next frame to select an action and continue playing. At this stage, the population 

evolved in the previous game tick is initialized again to start a fresh evolutionary 

process. However, the algorithm can continue evolution from the previous 

population with only some 𝐾 percentage of the population being reinitialised. This 

approach is known as population carrying and is one variants of rhNEAT that has 

been explored by Perez et al. 

3.3.2 Input and Outputs for the GVGAI Framework 

rhNEAT requires game state inputs to evaluate an individual. The following game 

features for all tests carried out in this paper (Perez et al, 2020):  

• Avatar x, y position, normalized between [0, 1].  

• Avatar x, y orientation. 

• Avatar’s health points, in [0, 𝑀𝐴𝑋ℎ], where 𝑀𝐴𝑋ℎ is the maximum health 

points achievable in each game. 

• Proportion of up to three resources 𝑟1, 𝑟2, 𝑟3  gathered by the avatar, where 

each 𝑟𝑖 is normalized in [0, 20].  

• Distance 𝑑 and orientation 𝑜 to the closest instance of a sprite of the 

following categories: 

o NPC sprite.  

o Immovable sprite.  

o Movable sprite.  

o Resource sprite.  

o Portal sprite.  

o Sprite produced by the avatar.  
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Distances are normalized in [0, 𝑀𝐴𝑋𝑑], where 𝑀𝐴𝑋𝑑 is the maximum possible 

distance in a game level. Orientation is normalized in [−1, 1]. A zero value shows 

that the direction of the distance vector to the sprite is parallel with the avatar’s 

orientation i.e. they are both facing in the same direction. When the distance 

vector to the sprite is pointing in opposite directions the orientation is normalised 

to −1. Clockwise orientation gradually progresses to 1 while anti clockwise tends 

to −1. This means that a 90-degree clockwise rotation corresponds to a value of 

𝑜 = 0.5. 

Health points, resources, distances and orientations to the different sprites are 

only considered if such features exist in a given game, this to ensure a minimal 

input size of the network. However, in some GVGAI games, it is possible that 

some observations do not appear before a certain frame for example, in the game 

Aliens enemies that are spawned are not visible for the first few frames therefore 

carrying the population from one tick to the next will lead to complications as two 

consecutive ticks have differing input sizes. To rectify this in the implementation 

we reinitialize the whole population when this occurs.  

For most games on GVGAI framework, especially the ones used in this paper, 

the network output nodes can be kept constant, as explained in section 3.2.1 

these output nodes correspond to the number of actions available in the game 

and most them only have a fixed number of actions you can take during it. For 

those GVGAI games that may change the number of available actions mid-game 

reinitializing the population would be prudent. 
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Chapter 4: Experiments 

Experiments in this paper will be split into two parts. The first will focus on how 

changing certain parameters in rhNEAT affects the performance of the algorithm. 

These parameters include the various mutation probabilities (𝜇), speciation 

threshold value (𝐶𝑃) and finally the coefficients of the distance function shown in 

equation 1 (𝑐1, 𝑐2, 𝑐3). 

In the second part of the experiments we will discuss the several variants of 

rhNEAT conducted by Perez et al. The rhNEAT variants are split into three 

experimental studies the first study includes differing components in the 

algorithms through toggling speciation and population carrying. The second looks 

at the alternative calculation methods. The final, using the best variant from the 

first set as a baseline, will compare the rhNEAT algorithm against other SFP 

methods (such as MCTS and vanilla RHEA) and RHEA state of the art. 

4.1 Setup 

The setup for both parts of the experiments discussed in this paper are the same. 

The setup is as follows; all experiments are run on 20 games from the GVGAI 

framework, the same ones used by Gaina et al, 2017. These games provide a 

wide variety of environments, difficulty and game types. Each of the games have 

5 levels, during the experiments we repeat each level 20 times. This means that 

every game is played 100 times. 

A decision budget is given to rhNEAT that determines when evolution should stop 

before providing an action to be played in the game. The decision budget chosen 

for this paper is limiting the number of times the Forward Model can be used. 

However, the decision budget can be other things such as, the number of 

generations or some time limit. A decision budget ensures that results are uniform 

across differing machine specifications. Furthermore, in order to provide a fair 

comparison with other SFP methods, rhNEAT is configured to run with a 

population size of 10 individuals, a rollout length of 15 and a budget of 1000 

Forward Model calls. 
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4.2 Experiment Part 1 rhNEAT Parameters 
In the first part of the experiments we want to determine how changing certain 

parameters effects the overall performance of the algorithm. In order to do this, 

we must start out with a baseline rhNEAT version of the algorithm to compare 

against. Table 1 in section 3.1 outlines all the baseline parameters used. For this 

baseline version we used speciation, population carrying and used only the final 

states score as the fitness value for each individual. 

4.2.1 Mutation Parameters 

 
Figure 9 Win rates per game for different rhNEAT mutation parameters. rhNEAT_25increase are results for 

increasing all mutation probabilities by 25% while 25_decerease is the opposite. 

Table 2 shows the win rate and scores of the different mutation parameters for rhNEAT. 

Two variations of rhNEAT were tested for the mutation parameters. We reduced 

all mutation probability values by 25% for one test and vice versa for the other. 

See Appendix A for their tables and their specific values. We note that the 

baseline variant retains a higher win rate of 33.25% compared to the other two 

variants as shown in Table 2. In fact, we also see a higher score, 9, compared to 

the alternatives meaning that the baseline had the highest score in 9 out of the 

20 games. This could suggest that a middle ground approach to mutation 

probabilities is desirable.  

𝑟ℎ𝑛𝑒𝑎𝑡_25𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 has a higher win rate of 32.5% compared to  

𝑟ℎ𝑛𝑒𝑎𝑡_25𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 with a value of 31.25% similarly their scores follow the same 

pattern, but here we notice a much sharper fall in score between them going from 

8 to 3 compared to the former test. Overall 𝑟ℎ𝑛𝑒𝑎𝑡_25𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 performs worse 

than the baseline except in a few games namely, Modality and Plaque Attack, 

where it outperforms the baseline, this could be due to a number of reasons some 

of which could include that these games are more complex meaning the NN 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑊𝑖𝑛 𝑅𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑟ℎ𝑛𝑒𝑎𝑡_𝐵𝑎𝑠𝑒 
𝑟ℎ𝑛𝑒𝑎𝑡_25𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 
𝑟ℎ𝑛𝑒𝑎𝑡_25𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 

33.25% 
32.25% 
31.25% 

9 
8 
3 
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needs more time to play out the level which a lower mutation rate allows for. 

Attaining scores in some games may take a while, in this case higher mutation 

probabilities could result in NN skipping over useful networks that will eventually 

work well in the game this could be a reason for why 𝑟ℎ𝑛𝑒𝑎𝑡_25𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 

performed the worst compared to its counterpart. If rollout length were increased, 

we may see even better results for 𝑟ℎ𝑛𝑒𝑎𝑡_25𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 but for fairness we have 

kept the rollout length limited to 15. 

Furthermore, we see that the performance across the different games is quite 

varied. Some of them are close to achieving 100%-win rate such as Infection, 

Aliens and Intersection while others are close or equal to 0% such as Dig Dug, 

Lemmings, Roguelike, Chopper and Crossfire. Most other GVGAI studies also 

experience this. As explained before this could be due to the former list of games 

rewarding agents more often while the latter do not reward as often or are harder 

to learn. 

4.2.2 Coefficient Parameters 

 
Figure 10 shows the Win Rate for different Coefficient parameters of rhNEAT. 

Table 3 shows the win rates and scores of different coefficient parameters for rhNEAT. 

The coefficients 𝑐1, 𝑐2 and  𝑐3 are used to tune the importance of three factors for 

the distance function shown in equation 1. These are: the number of excess, 𝐸, 

and disjoint, 𝐷, genes and the average weight difference of matching genes, 𝑊̅. 

Here we test how increasing and decreasing all these coefficient values by 50% 

effects the performance of our algorithm. 𝑐𝐷𝑒𝑐 is the one where all coefficient 

values are reduced by 50% while 𝑐𝐼𝑛𝑐 is the opposite. See Appendix B for the 

table of changes for both tests. We start by noting that the baseline, rhneat_Base, 

outperformed in win rate against the other two variants. However, we see the 

baseline score falls just short of the score for 𝑐𝐷𝑒𝑐 by just a value of 1. It is also 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑊𝑖𝑛 𝑅𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑟ℎ𝑛𝑒𝑎𝑡_𝐵𝑎𝑠𝑒 

𝑐𝐷𝑒𝑐 
𝑐𝐼𝑛𝑐 

33.25% 
32.00% 
31.30% 

7 
8 
5 
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interesting to note that 𝑐𝐷𝑒𝑐 outperformed 𝑐𝐼𝑛𝑐 both in terms of scores and win 

rates. 𝑐𝐷𝑒𝑐 performed 1.25% worse compared to the baseline but did attain a 

higher score. The coefficients are proportional to the compatibility distance, 𝛿, 

therefore decreasing the coefficient values would result in a lower compatibility 

distance value. This in turn would have the effect of there being less types of 

species since more individuals would be grouped into larger species as they meet 

the speciation threshold limit. This may have resulted in some useful innovations 

being able to live longer as otherwise if they formed a small species they likely 

would have been removed early on. This also explains why 𝑐𝐼𝑛𝑐 performs the 

worst with a win rate of 31.30% and only a score of 5. Increasing the coefficients 

meant that 𝛿 became higher resulting in more species forming increasing the 

likelihood of future species that may perform well being removed early from the 

population. 

4.2.3 Speciation Threshold Parameter 

 
Figure 11 shows the Win Rate for 20 of the GVAGI games for two variations of rhNEAT method for 

speciation threshold value. 

Table 4 shows the win rates and scores of different speciation threshold parameters for rhNEAT. 

In section 4.2.2 we were tuning compatibility distance, 𝛿, between individuals, 

however, this value is compared to another value known as speciation threshold, 

𝐶𝑃. It is this value that decides whether a specific compatibility distance results 

in individuals being grouped into the same species. 𝐶𝑃 and 𝛿 are used in 

conjunction to determine which individuals are grouped together as a species. 𝛿 

values that are less than 𝐶𝑃 are grouped into the same species. In our results we 

see that the increased variant, 𝑐𝑝50𝐼𝑛𝑐, of 𝐶𝑃 has a higher win rate of 32.50% 

compared to the lowered version, 𝑐𝑝50𝐷𝑒𝑐, with only 30.50%. We also note that 

the increased variant has a much higher score of 13 higher than its counterpart 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑊𝑖𝑛 𝑅𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑟ℎ𝑛𝑒𝑎𝑡_𝐵𝑎𝑠𝑒 
𝑐𝑝50𝐷𝑒𝑐 
𝑐𝑝50𝐼𝑛𝑐 

33.25% 
30.50% 
32.35% 

5 
3 

13 
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and the baseline. This means it had the highest score in 13 out of the 20 games 

available. Having a higher speciation threshold means that more individuals are 

grouped into the same species as there will be a higher probability that 𝛿 values 

lower than 𝐶𝑃 will occur. As explained in 4.2.2 this means that there will be a 

smaller number of species, increasing the likelihood of a useful innovation being 

able to live longer as smaller species tend to be removed from the population 

after a short while. This may explain why decreasing 𝐶𝑃, lowering the range of 

acceptance of 𝛿 values, means a higher number of small species form, increasing 

the probability of losing useful innovations early. The baseline does have the 

highest win rate of 33.25% suggesting that a balanced approach may be the most 

desirable for the value of 𝐶𝑃. See Appendix C for the specific speciation threshold 

values used in each of the tests. 
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4.3 Experiment Part 2 rhNEAT Variants 
The experiments presented here are the same ones presented in a condensed 

version of this report that has been accepted for publication by the 2020 IEEE 

Conference on Games carried out by Perez et al. The objectives for these 

experiments are to evaluate the performance of the different variants of rhNEAT. 

4.3.1 rhNEAT Variants 

 
Figure 12 shows the Win Rate for 4 variants of rhNEAT algorithm where each variant has some 

component like speciation or carry population or both. 

Table 5 this table shows the win rate and scores of the different variants of rhNEAT. 

In these set of experiments, we compare the different variants of rhNEAT by 

incorporating various components into them. Some of these components include: 

• Speciation: Individuals in a population are grouped into species according 

to how related they are to one another. Section 1.3.3 has more details. 

• Population Carrying: at each frame some percentage of the population is 

carried over from the frame. Section 3.3.1 has more details. 

We chose these two components as they have the greatest influence on the 

performance of the algorithm. We use a baseline rhNEAT as the version that does 

not use any of these components.  

• 𝑟ℎ𝑁𝐸𝐴𝑇(+𝑐𝑝): Algorithm uses only population carrying  

• 𝑟ℎ𝑁𝐸𝐴𝑇(+𝑠𝑝): Algorithm uses only speciation  

• 𝑟ℎ𝑁𝐸𝐴𝑇(+𝑠𝑝, +𝑐𝑝): Algorithm incorporates both speciation and population 

carrying.  

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑊𝑖𝑛 𝑅𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑟ℎ𝑁𝐸𝐴𝑇 
𝑟ℎ𝑁𝐸𝐴𝑇(+𝑐𝑝) 
𝑟ℎ𝑁𝐸𝐴𝑇(+𝑠𝑝) 

𝑟ℎ𝑁𝐸𝐴𝑇(+𝑠𝑝, +𝑐𝑝) 

15.54% 
22.69% 
30.45% 
36.50% 

0 
2 
6 

12 
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All variants use only the final state value at the end of rollout as their individual 

fitness. From the results we clearly see that using speciation and population 

carrying increases both win rate and game scores. The baseline rhNEAT 

performs the worst with only a 15.54%-win rate. We note that there is an increase 

in performance to 22.69% when speciation is added, while adding population 

carrying increases the win rate to 30.45%. Furthermore, the final variant with both 

components reaches a 36.5%-win rate, this being the highest number of best win 

rate across games while also obtaining the best score in 12 out of the 20 games 

tested. The results suggest that the algorithm benefits from having different 

niches of weights in the population of rhNEAT, and even more so when the 

population is kept between frames (Perez et al, 2020). Agents can adapt to 

drastic changes in game mechanics or the removal of features used as input for 

rhNEAT by reinitialising the entire population, this also may be a reason for the 

increased performance when adding population carrying. 

4.3.2 rhNEAT Reward 

This section presents alternatives to how fitness is assigned to individuals. All 

variants use the best performing algorithm from the previous tests which was 

found to be rhNEAT with speciation and population carrying.  

 
Figure 13 shows the Win Rates per game of different rhNEAT variants: using the evaluation of the last 

state of the rollout (rhNEAT), accumulated through all states visited (-acc) and accumulated and 

discounted (-accdisc). 

Table 6 shows the Win Rate and Scores of the different reward and fitness alternatives of rhNEAT. 

In this section we aim to analyse three procedures to compute the reward of a 

given rollout. These versions include:  

• rhNEAT: uses the final game state at the end of rollout value as the reward.  

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑊𝑖𝑛 𝑅𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑟ℎ𝑁𝐸𝐴𝑇 

𝑟ℎ𝑁𝐸𝐴𝑇 − 𝑎𝑐𝑐 
𝑟ℎ𝑁𝐸𝐴𝑇 − 𝑎𝑐𝑐𝑑𝑖𝑠𝑐 

36.50% 
35.15% 
34.20% 

12 
5 
4 



Applying NEAT in a rolling horizon way Muhammad Sajid Alam 

 

30 
 

• rhNEAT-acc: provides an accumulated sum of the values of all states 

visited during the rollout 

• rhNEAT-accdisc: provide the same accumulated sum as above but also 

includes a discount factor 𝛾 = 0.9.  

From the results we can see that the win rate between rhNEAT and rhNEAT-acc 

is not that high with only a 1.35% difference. This suggests that considering all 

states and considering only the last state has little impact on our win rate. 

However, we see a bigger fall in win rate from the baseline if the accumulated 

sum is discounted. From Figure 13 we see that rhNEAT-accdisc tends to achieve 

marginally worse results per game, while rhNEAT and rhNEAT-acc achieve 

higher win rates. We also see that rhNEAT obtains the highest scores in most 

games, 12 compared to the other two variants. Therefore, we can conclude that 

the version of the algorithm that only uses the final state’s evaluation is the best 

hence the most appropriate to use when comparing against the alternative 

versions of rhNEAT and other approaches.  

4.3.3 rhNEAT Comparison with Other Algorithms 

 
Figure 14 Win rates per game for rhNEAT, MCTS, RHEA and state of the art results RHEA methods. 

Table 7 shows the win rate and highest scores achieved by different SFP methods including rhNEAT. 

In this last test we compare rhNEAT to other methods used in previous studies. 

Namely we will compare rhNEAT against RHEA and MCTS specifically we will 

be using their sample versions from GVGAI. We will also compare it against 

RHEA state of the art (SotA) refer to the paper “Analysis of Vanilla Rolling Horizon 

Evolution Parameters in General Video Game Playing” for more information 

(Gaina et al, 2020). The tests will run on the same 20 games from the GVGAI 

framework with the same number of repetitions and levels. Parameters such as 

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑊𝑖𝑛 𝑅𝑎𝑡𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 

𝑟ℎ𝑁𝐸𝐴𝑇 
𝑅𝐻𝐸𝐴 

𝑀𝐶𝑇𝑆 
𝑆𝑜𝑡𝐴 

36.50% 
44.80% 
42.65% 
51.21% 

1 
0 
4 

16 
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population size, individual/rollout length, budget and state evaluation functions 

will be kept the same. The exploration constant, 𝐾, for MCTS is set to √2. We will 

compare the best version of rhNEAT found using previous tests, rhNEAT with 

base values from Table 1, speciation and population carrying, with MCTS, RHEA 

and state-of-the-art results obtained by RHEA.  

From the results we find that rhNEAT performs below that of the other methods 

with only a 36.50%-win rate compared to RHEA and MCTS with 44.80% and 

42.65% respectively. As expected SotA achieves the highest win rate but it is to 

be noted that SotA compiles results from multiple configurations of RHEA to 

represent a goal that other single configured SFP methods can aim for. 

Nonetheless we see some strengths of rhNEAT where the win rate in several 

games surpasses that of RHEA, MCTS and SotA. These games include Crossfire 

and Camel Race. rhNEAT also achieves a 100%-win rate in Intersection the 

same as the other methods.  

From this we see that rhNEAT can play better than some agents when it comes 

to games with sparse rewards. SFP methods traditionally struggle playing well in 

these types of games as little information is provided to agents so very little 

guidance is given to search for optimal solutions (Gaina et al, 2019). 

Finally, we see that rhNEAT played Infection, Aliens, Butterflies and Intersection 

to a degree that is comparable to the other methods where they achieved similar 

high win rates. 
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Chapter 5: Conclusion 

This paper sets out to implement and introduce rhNEAT, a new Statistical 

Forward Planning (SFP) algorithm that combines the concepts of Rolling Horizon 

Evolutionary Algorithms (RHEA) and of NeuroEvolution of Augmented 

Topologies (NEAT), and evaluate it in a variety of games from the General Video 

Game AI (GVGAI) framework. We compared rhNEAT to other variants of itself to 

determine the most optimal version. We compared the final version of rhNEAT’s 

performance against other SFP methods including a state-of-the-art method.  

 

The algorithm works by receiving game features as input for a neural network 

(NN) from which it outputs one of the possible game actions. The topology and 

weights of the NN are evolved using an evolutionary algorithm. Each individual’s 

NN is assigned a fitness by rolling the game forward, applying the actions 

specified by the NN given the input features of each state, until the end of the 

rollout is reached and the final game state is evaluated.  

 

From the comparison of the different parameters of rhNEAT and by analysing 

their performance across 20 GVGAI games we find that the base rhNEAT values 

outlined in Table 1 offers the best performance. We also find that the best rhNEAT 

variant from those that were explored was the one using speciation, population 

carrying and using the last game state reached in rollout as the fitness of the 

individual. 

 

We can conclude our research question: 

Can rhNEAT be a new SFP method with performance similar to or greater than 

other popular SFP methods such as RHEA? 

Results show that rhNEAT achieves a lower overall win rate than other SFP 

methods like Monte Carlo Tree Search and RHEA. However, it is able to obtain 

better results than the state-of-the-art RHEA in two sparse reward type games.  

 

From this we believe that these results display the potential of this method as a 

new SFP method, even though it did not perform better than other methods it was 

still able to compete closely to them and even outperform state of the art in two 

of the games. For these reasons we believe further investigation would be 

interesting and prudent for this new algorithm.  
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Chapter 6: Further Work 
 

The literature review on NEAT variants is vast see sections 2 for ones on 

HyperNEAT and NERO. Further work could be done on combining the other 

NEAT variants with Rolling Horizon methods. One such example could be to 

explore how indirect representations such as Compositional Pattern Producing 

Networks (CCPNs) via HyperNEAT effects performance when introduced to 

rhNEAT. Further work can also be carried on rhNEAT specific parameters as this 

paper hasn’t tested singular variable changes i.e. this paper tested all mutation 

parameters at once instead of individually measuring each mutation probability. 

Further tests may bring light to a more optimal rhNEAT setting. An additional 

possibility could be to look into dynamically alternating between different rhNEAT 

settings depending on the game state and the perceived reward landscape, as 

results showed that different variants seem to perform differently depending on 

these factors. Another interesting idea to explore is the usage of convolutional 

layers to extract features from the game screen. Finally, the idea of using general 

game features with forward planning can be extended to other problems, such as 

Grammatical Evolution (O’Neill et al, 2001), Tangled Program Graphs (Kelly et 

al, 2017) or different variants of Genetic Programming (Perez et al, 2020). 
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Appendix A – Mutation Probability Changes 

Parameter Name Value 

𝜇𝑙 

𝜇𝑛 
𝜇𝑤𝑠 
𝜇𝑤𝑟 
𝜇𝑡𝑙 

Mutate Link Probability 

Mutate Node Probability 
Mutate Weight Shift Probability 

Mutate Weight Random Probability 
Mutate Toggle Link Probability 

0.375 

0.225 
0.375 
0.45 

0.0375 

The table above shows all mutation probabilities reduced by 25% from the baseline 
values show in Table 1. 

Parameter Name Value 

𝜇𝑙 
𝜇𝑛 

𝜇𝑤𝑠 

𝜇𝑤𝑟 
𝜇𝑡𝑙 

Mutate Link Probability 
Mutate Node Probability 

Mutate Weight Shift Probability 

Mutate Weight Random Probability 
Mutate Toggle Link Probability 

0.625 
0.375 

0.625 

0.75 
0.0625 

The table above shows all mutation probabilities increased by 25% from the baseline 
values show in Table 1. 
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Appendix B – Coefficient Changes 

Parameter Name Value 

𝑐1 

𝑐2 
𝑐3 

Excess Coefficient 
Disjoint Coefficient 

Weight difference coefficient  

0.5 

0.5 
0.5 

The table above shows all the coefficients for the distance function reduced by 50% from 
the baseline values show in Table 1. 

Parameter Name Value 

𝑐1 
𝑐2 

𝑐3 

Excess Coefficient 
Disjoint Coefficient 

Weight difference coefficient  

1.5 
1.5 

1.5 

The table above shows all coefficients for the distance function increased by 50% from 
the baseline values show in Table 1. 
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Appendix C – Speciation Threshold Changes 

Parameter Name Value 

𝐶𝑃 Speciation Threshold 0.2 

The table above shows the speciation threshold decreased by 50% from the baseline 
values show in Table 1. 

Parameter Name Value 

𝐶𝑃 Speciation Threshold 0.6 

The table above shows the speciation threshold increased by 50% from the baseline 
values show in Table 1. 

 

 

 


